استفاده از سیستم‌های طبقه‌بندی چندگانه به‌منظور بهبود دقت طبقه‌بندی تصاویر تمام پلاریمتریک راداری با فضای ویژگی ابعاد بالا

نویسندگان

  • آخوندزاده, مهدی دانشگاه تهران
چکیده مقاله:

یک تصویر تمام پلاریمتریک راداری (POLSAR) قابلیت فراهم‌کردن یک داده با فضای ویژگی ابعاد بالا را دارد. این حجم بالای اطلاعاتی می‌تواند دقت کلی طبقه‌بندی پوشش زمینی را افزایش دهد. اما افزایش ابعاد داده در صورت ناکافی بودن تعداد نمونه­های آموزشی ممکن است باعث پیچیده­تر شدن طبقه­بندی و رخ دادن پدیده نفرین ابعاد شود. یکی از راهکارهای حل این مشکل، استفاده از سیستم­های طبقه­بندی چندگانه (MCS) است که توانایی تقسیم و غلبه بر حجم بالای داده در مقایسه با طبقه­بندی‌کننده­های تکی را داراست. حتی برخی از روش­های MCS می­توانند با به­کارگیری طبقه­بندی­کننده­های ضعیف و ناپایدار همچون درخت تصمیم (DT) و شبکه عصبی (NN) به دقت بالایی در طبقه­بندی ابعاد بالا دست یابند. هدف این مقاله نیز استفاده از چند روش مشهور MCS همچون آدابوست، بگینگ و جنگل‌های تصادفی به‌منظور بهبود دقت طبقه­بندی پوشش زمینی از تصاویر POLSAR با ابعاد بالا است. داده­های استفاده شده در این مقاله، تصاویر راداری رادارست-2 از منطقه سانفرانسیسکو و تصویر ایرسار از منطقه فلوولند است. برای طبقه‌بندی این دو تصویر، 69 ویژگی پلاریمتریک از آن­ها استخراج شد. دو جداساز NN و DT به­عنوان طبقه‌بندی کننده پایه روش‌های آدابوست و بگینگ انتخاب شد. در ادامه، روش‌های MCS با طبقه­بندی­کننده­های تکی NN و DT مقایسه شد. نتایج، نشان از دقت کلی بیشتر روش­های MCS بین 5%-8% برای طبقه­بندی تصویر اول و 9% تا 16% برای طبقه­بندی تصویر دوم داشت. حتی دقت تولید کننده و دقت کاربر روش­های MCS در تمام کلاس­ها نسبت به طبقه‌بندی کننده‌های تکی بیشتر بود. به­گونه­ای که در برخی کلاس­ها این اختلاف بین 20% تا حتی نزدیک به 50% شد. این نتایج نشان داد که روش­های MCS در مقایسه با طبقه‌بندی­کننده­های تکی نه­تنها قادر به تولید دقت کلی بیشتر در طبقه­بندی پوشش زمینی است، بلکه حتی کارایی و اعتمادپذیری نسبی بالاتری در تفکیک تک­تک کلاس­ها دارد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از سیستم های طبقه بندی چندگانه به منظور بهبود دقت طبقه بندی تصاویر تمام پلاریمتریک راداری با فضای ویژگی ابعاد بالا

یک تصویر تمام پلاریمتریک راداری (polsar) قابلیت فراهم کردن یک داده با فضای ویژگی ابعاد بالا را دارد. این حجم بالای اطلاعاتی می تواند دقت کلی طبقه بندی پوشش زمینی را افزایش دهد. اما افزایش ابعاد داده در صورت ناکافی بودن تعداد نمونه­های آموزشی ممکن است باعث پیچیده­تر شدن طبقه­بندی و رخ دادن پدیده نفرین ابعاد شود. یکی از راهکارهای حل این مشکل، استفاده از سیستم­های طبقه­بندی چندگانه (mcs) است که تو...

متن کامل

ارائه یک روش انتخاب ویژگی براساس الگوریتم ژنتیک و درخت تصمیم به‌منظور طبقه‌بندی تصاویر تمام پلاریمتریک راداری

یک تصویر تمام پلاریمتریک راداری (POLSAR) قادر است ویژگی­های پلاریمتریک مهمی برای طبقه­بندی پوشش زمینی فراهم کند. این ویژگی­ها می‌توانند پارامترهای مستخرج از ماتریس پراکنش، کواریانس و همدوسی یا پارامترهای مستخرج از روش­های تجزیه هدف یا هر دو دسته باشد. در این مقاله، ویژگی­های پلاریمتریک فراوانی از یک تصویر POLSAR استخراج می­شود. سپس با استفاده از الگوریتم ژنتیک (GA) و درخت تصمیم (DT)، یک روش انت...

متن کامل

کارایی شاخص‌های راداری در استخراج سطوح نفوذناپذیر شهری با استفاده از تصویر رادار تمام پلاریمتریک

تفکیک سطوح نفوذناپذیر در مناطق شهری و بررسی روند تغییرات آن، اهمیت بسیاری دارد؛ زیرا امروزه این مقوله شاخصی از گسترش شهر به‌شمار می‌آید. سطوح نفوذناپذیر در مناطق شهری، شامل مناطق مسکونی، مناطق تجاری و صنعتی، پارکینگ‌ها و سطح معابر و شبکة خیابان‌هاست. انواع سطوح نفوذناپذیر و تنوع بسیار آن‌ها از نظر شکل، اندازه و مواد تشکیل‌دهنده سبب پیچیدگی تفکیک این سطوح در مناطق شهری می‌شود. در این پژوهش از تص...

متن کامل

ارائه یک روش انتخاب ویژگی براساس الگوریتم ژنتیک و درخت تصمیم به منظور طبقه بندی تصاویر تمام پلاریمتریک راداری

یک تصویر تمام پلاریمتریک راداری (polsar) قادر است ویژگی­های پلاریمتریک مهمی برای طبقه­بندی پوشش زمینی فراهم کند. این ویژگی­ها می توانند پارامترهای مستخرج از ماتریس پراکنش، کواریانس و همدوسی یا پارامترهای مستخرج از روش­های تجزیه هدف یا هر دو دسته باشد. در این مقاله، ویژگی­های پلاریمتریک فراوانی از یک تصویر polsar استخراج می­شود. سپس با استفاده از الگوریتم ژنتیک (ga) و درخت تصمیم (dt)، یک روش انت...

متن کامل

پایش محصولات زراعی با استفاده از تصاویر پلاریمتریک اینترفرومتریک سار

     افزایش تولید محصولات کشاورزی با توجه به شرایط آب و هوایی، محدودیت منابع آبی و نیز محدودیت زمین‌های دارای پتانسیل تولید، همچنین محدودیت­های مالی در کشور با مشکلات فراوانی روبرو می­باشد. بنابراین برای تأمین مواد غذایی باید بهره‌وری از عوامل تولید به ویژه آب و خاک افزایش و ضایعات کشاورزی تا حد امکان کاهش یابد. این امر نیازمند پایش منظم محصولات می­باشد. سنجش از دور یکی از مهمترین تکنیک‌های مور...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 3

صفحات  69- 84

تاریخ انتشار 2014-12

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023